Towards Adaptive
Hidden Markov Model Beamformers

John McDonough, Dominik Raub, Matthiasdftel and Alex Waibel

Abstract— Recent interest within the automatic speech recogni- system. Experience has shown, however, that quadratic criteria
tion community has focused on the recognition of “meeting room” such as SNR are only weakly correlated with the recognition
speech. In this scenario, the microphone is located in the medium accuracy of an ASR system: improvements in SNR often do

field, rather than being mounted on a headset and positioned tt late int ducti . d te (WER
next to the speaker’s mouth. Hence, this is a natural application not translate into reductions in word error rate ( )-

for arrays of microphones and beamforming techniques. Recent ~ Recent work by Seltzer [1] has provided further evidence
research has indicated that a maximum likelihood (ML) criterion, that the conventional beamforming algorithms mentioned
evaluated with respect to a hidden Markov model, can be used above are not optimal for ASR. In the ASR field, the most im-
to estimate optimal filter coefficients for a filter-and-sum beam- portant maximization criterion for a wide variety of parameter
former. Indeed, this approach has shown significant reductions . . . . Lo L
in word error rate with respect to a standard delay-and-sum estimation tasks is the_maX|mum likelihood (ML_) criterion.
beamformer. Because acoustic conditions—e.g., speaker locationsModern speech recognizers are based on the hidden Markov
noise levels, reverberation characteristics—change constantly in model (HMM). Seltzer’s findings indicate that an ML criterion,
a meeting room environment, a beamformer must continuously evaluated with respect to an HMM such as is typically used
adapt to provide optimal performance. This work is an investi- - ¢, ASR can be used to estimate optimal filter coefficients
gation into adaptive beamforming algorithms based on the ML L .
criterion. In particular, we show how a recursive version of the for a f||ter-and-§gm beamformer [_1]' Indeed_, this approach
well-known expectation maximization algorithm can be used to has shown significant reductions in WER with respect to a
set the sensor weights of a subband domain generalized sidelobeconventional delay-and-sum beamformer.
cancelling beamformer. We derive two re-estimation algorithms: Because acoustic conditions—e.g., speaker locations, noise
The first is a simple probabilistic gradient descent procedure. |eyels; reverberation characteristics—change constantly in a
The second is an instance of an extended Kalman filter. ! - .
meeting room environment, a beamformer must continuously
Index Terms—microphone arrays, beamforming, Kalman fil-  gdapt to provide optimal performance. In this work, we
ters, speech recognition present a number of adaptive beamforming algorithms based
on ML optimization criteria, where, following Seltzer [1], the
. INTRODUCTION likelihood is evaluated with respect to a HMM. In particular,

NTEREST within the automatic speech recognition (AS%(e will show how a recursive version of the well-known
1

research community has recently focused on the rec
nition of “meeting room” speech. In this scenario, the mi*
crophone is located in the medium field, rather than bei
mounted on a headset and positioned next to the speak
mouth. Hence, this is a natural application for arrays & Toll o _ )
microphones and beamforming techniques. For two principal 1YPically, ML estimation for a HMM is done with the EM
reasons, however, conventional beamforming techniques 2Korithm. The conventional EM algorithm is unsuitable for
not well-suited to this application: Firstly, conventional arra§Ul @Pplication, however, because it updates the parameter

processing algorithms are based on the assumption that YRE/€S only after cycling throughll available training data,
desired signal (i.e., a user's speech) is uncorrelated w ich we refer to as thanbounded delap_ro_blem. Moreover,
any noise or interference that is also present in the envird® EM algorithm requires that all training data from the
ment. For ASR applications, this assumption is unjustifiedStant past be retained, which we refer to as gnewing
as the most important source of signal distortion is roofifit@ Problem. In Section II-B, we show how the unbounded
reverberation, which consists of multiple delayed versions 8flay problem can be avoided through recourse torear-
the original signal, and hence is highly correlated with iSive expectation-maximization (REM) algorithm. In the REM

Secondly, conventional array processing algorithms typica@gor'thm* the parameters of interest are updated as soon as a

maximize a quadratic criterion such as signal-to-noise rafit;’ Sample arrives. Section Il also develops the form of the
M auxiliary function to be used in the remaining sections.

(SNR), while simultaneously satisfying a constraint that ar@ X : N
signal from a desired direction pass undistorted through thel™ Section llIl-A, we review the definition of theepstral
sequencewhich is used as an input feature in most modern
All authors are with the Interactive Systems Laboratories at the UnisersitASR systems. In Section 11I-B we introduce the assumption

Karlsruhe in Karlsruhe, Germany. Emajincd@ira.uka.de , Web site: that the cepstral features are derived from the subband domain
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Schrempf and Fabian Jakobs for their help in recording the data and %Jtplljt of a generalized sidelobe can.celling (GSC) beamformer'
veloping the software used for the experiments reported in this work.  Section 1lI-C then uses the preceding development to derive

(pectation maximization (EM) algorithm can be used to set
e sensor weights of a frequency domain generalized sidelobe
ncelling beamformer. The approaches we propose as well as
Q organization of the balance of this work can be described
follows.



both a ML beamformer based on conjugate gradient optimizais useful to think ofy as being “incomplete,” inasmuch as
tion as originally proposed by Seltzer [1], as well as a simple does not contain certain useful information. Letbe the
least mean square (LMS) error-style algorithm. The LMSomplete observatioassociated witly. In addition to all the
algorithm so obtained is remarkably similar to the conventionaformation iny, x also contains this missing information, the
LMS algorithm. so-calledhidden variables

Taking the GSC beamformer and definition of cepstral Suppose thaf(y; A) is a probability density function (pdf)
sequences from Section IlI-A as a starting point, we shown y specified by some set of parameters We desire to
in Section IV-A how the maximum likelihood HMM beam-obtain a ML estimate ofA given the training sey = {y,},
former can be posed asrenlinear least squares estimationsuch that
problem, where the nonlinearity is due to the | — |? factor A = arg maxlog f(V; A)
appearing in the definition of cepstral sequences. We then A
linearize the estimator about the current operating point, aAgsuming that all observations; are independent and iden-
derive recursive update formulae very similar to those ustdally distributed (iid), we can equivalently write
in conventional recursive least squares (RLS) estimation. This A= arg maleo FlysA)
approach effectively solves the growing data problem. o A - CRAME

In Section IV-B we discuss the steps necessary to cast ) o
the linearized RLS beamforming algorithm developed in Sec- "€ EM algorithm as originally proposed by Dempster,
tion IV-A as an iterated extended RLS beamformer. This2ird, and Rubin [4] proceeds in two steps. In the E-ear
approach offers significant advantages in terms of speedR§ctationstep, we evaluate thauxiliary function@(A, A®),

convergence. given by
Although the HMM beamformer derived in this work op- (i) — A
erates in the subband domain, the sensor weights for each QUAAT) = Zt:g{logf(xt’A)‘y“A }
subbandcannot be estimated separately, as in conventional o ) ) )
beamformers. This is a product of the nonlinearity mentiondgereAt” is the current parameter estimate; i.e., the estimate
above. In Section IV-C, we discuss possibilities for treatingftér ¢ iterations. Note that the expectation above is over the
the subbands independently, and thereby obtaining the nunfézﬁplete observatior;, and is evaluated with pdf parameters
ous ensuing advantages. Section IV-D briefly discusses the - In the M-ormaximizatiorstep, we update the parameter
advantages inherent in a square-root implementatiorj2} ©€stimate according to
of the iterated extended RLS estimator derived previously. In AUHD = arg maxQ(A, AD)
conventional beamforming, it is often useful to apply diagonal A
loading to the observation correlation matrix in order to limiprovided the parameter estimates have not yet converged, the
the size of the active weight vector, as this improves thg@gorithm then continues with another E-step.
final sidelobe structure and reduces the sensitivity of theThe proof that the EM algorithm converges is based on the
beamformer to steering errors [86.6]. Section IV-D also inequality
describes how diagonal loading can be added to the iterated 4 , , ,
extended RLS beamformer considered here. QA AD) — QAW AD) <log f(V; A) —log f(V; AD)
Section V presents the results of several large vocabulary o (1.1)
conversational speech recognition experiments that were cf@m which it follows [5, §9.2]
:ihgcted tl? test the effectiveness of the algorithms proposed in (A A®) > Q(A®D, AD) = F(V;A) > F(V;AD)
is work.

In the final sec_tlon, we summarize the results of this Worlé. The Recursive Expectation Maximization (REM) Algorithm
and thereafter discuss our conclusions and plans for future

work We now present a recursive version of the EM algorithm
' originally proposed by Titterington [6], and further refined by
Frenkel and Feder [7]. As before, the algorithm consists of
Il. MAXIMUM LIKELIHOOD ESTIMATION two steps. In the E-step, the auxiliary function
As mentioned in the introduction, the preferred criterion ) (t41)
; oo SN QAIAY) = LY (p)
or parameter estimation in most ASR applications is the ML 1
criterion. In this section, we provide a brief introduction to the 41— (i—1)
. O . . = A -E41 i M)y A 1.2
EM algorithm, which is invariably used whenever performing ; { og f (xi; A)ly } (1-2)
ML estimation in conjunction with a HMM. Thereafter we ) . e,
introduce the REM algorithm, which is perhaps not so well- =ALT () + & {logf(x‘“’A)‘yf“’A } (-3
known but will prove vital for the development in subsequenjs evaluated, wher € (0, 1] is the so-calledorgetting factor
sections. We will then briefly discuss the specialization of botfhe statistical expectation over each complete observation

algorithms for use with a HMM. x,,1 is evaluatedonce using the parameter values®) that
] o ] are current wherx,,; arrives. The M-step is then the same
A. The Expectation Maximization (EM) Algorithm as for the regular EM algorithm,

To begin, let us define aabservationy drawn from a set

(t+1) _ ()
of training data)). Althoughy is what we actually observe, A =arg AmaxQ(A,A ) (I1.4)



Note that, in keeping with the recursive nature of the alg®uring conventional HMM training, these posterior probabili-
rithm, each parameter estimate in (11.4) is associated withtias are necessary for mean and variance re-estimation, which

time . is achieved by maximizing the auxiliary function
C. EM Algorithm for the Hidden Markov Model K(AA®) = =3 ks [10{; 127Q 4|
Consider a directed graph representing an HMM comprised Tkt

of a set{n;} of nodegand a ;et{em} of edges wheren; is + (y, — p,jk.)Tij (v, N]k)} (1.12)

the i-th node anck;; is the directed edge from; to n;. Let

us define theransition probability As we will find in Section Ill, K (A|AY) can also be optimized
with respect to the frequency-dependent sensor weights to

pjli = P(njlni) = P(ejjilni) (11.5) perform ML beamforming.

Let g;x denote thek-th Gaussian component associated with Applying the REM algorithm to the HMM is somewhat

noden; and define thenixture weight more involved, inasmuch as each ; depends on all observa-
tionsy? in a given utterance. Although it would be straight-

ki = P(gir|ni) forward to update all parameters at the end of a complete

The conditional likelihood assigned to a single observagion utterance, updating more often than that, such as at the end of
by the Gaussian mixture model associated with nogean every word, would require an approximation of (11.8—11.9). For

be expressed as example, we might make Vterbi approximation8, §12.2] at
the end states of words, and sum only along the most likely
Ag) = ZQk|z’P(Y§Aik) path.
k
whereA; = {(qx|s, Air) }- HereAy, = (pyy,, Q;;) andp,, and [1l. M AXIMUM LIKELIHOOD BEAMFORMING

Q,, respectively denote the mean vector and covariance mas

trix. The likelihood returned by thé-th Gaussian component Having completed our brief discussion of the EM and REM

algorithms, we now take up the task of using this algorithm to

IS 1 perform ML beamforming. In so doing, we will introduce the
P(y;Aik) = ——=cxp [—5(y — pi) Q' (v — )] concepts of cepstral sequences and the generalized sidelobe
V127 Qu| ? cancelling beamformer.

Finally, lety? denote thesequencef observations associated
with a given utterance and Igt, for somel < ¢ < T denote A. Cepstral Sequences

a subsequence off’. Let v = {v,} denote a vector of cepstral coefficients

Let us define theforward probability [8, §12.2] a(yj, i) associated with a vectdv = {V,,} of frequency samples,
as the likelihood of generating the observation subseque%% that

y! and arriving at state:; at time¢ given the current model M—1
parameters\: Un = o7 ;_:0 10g |V |? cos wpmn (I1.1)
a(yi,i) = P(ny = ni, y5; M) (11.6)

) ) ) wherew,, = m/2rM. Defining thecosine transform matrix
where—in a slight abuse of notation—we have usedo de- g — {5, 1 whose components are given by

note the HMM state associated with observaggnSimilarly,

the backward probabilityis the likelihood of generating the S = —— cos
observation subsequeng€’ 1 conditioned on having started M 2rM
from staten; at timet: for all n,m =0,1,...,M — 1, we can rewrite (lll.1) as

T |, T . M-1

B(Yit1ld) = P(yipalne = njs A) (1.7) vy = Z Sy log \Vm|2
These probabilities can be calculated via the well-known m=0
recursions [8§12]: If the features are to be used for ASR, a nonlindéel-
alyt™,j) = P(yiiriAj) Za(Y§,i)pj\i (.8) Wwarping is typically applied to the frequency axis prior to

p the calculation of cepstral coefficients. In this case, we must
) ) replace the last equation with
Bytali) = Y BTl py Plyeud) (19 P q
%

M-1
Our interest in the forward-backward probabilities is due vn 2D S log |V |? (1n.2)
to the fact that they can be used to calculate the posterior m=0
probabilities where
Vil 2 " M, |Vi|? 1.3
it = Plai = glyTi ) (110) Vnl? % 2 MV (1)
t s T ; . AL
= y1,J) B(yiald) _ awy POys Aje) (1.11) are the Mel-warped frequency or subband components and

P(y{;A) 2 i Py Ajm) M = {M,,;} is the Mel-warping matrix.



B. Generalized Sidelobe Cancelling Beamformers We can take the desired derivative on both sides of (111.7)

Now consider thegeneralized sidelobe cancellin@gsSC) to obtain

beamformer [3$6.7.3], whose final output is obtained from 8|Vm|2

the difference of the outputs of upper and lower branches. On OWY

the upper branch, the inplif,,, is multiplied by thequiescent - : .

weight vectow, ,,,, which is chosen to ensure the beamformesrUbSt'tUtIng (Il1.11) into (1ll.10), we arrive at

satisfies alistortionless constrainfThe latter can be expressed 9vn

as oWy
wi =1 (111.4)

q,m n

=B2U,, UL (B, Wam — Wom) (1n.11)

= pum(t) - BEU,, UZ (B, wa.,m — wgm) (111.12)

C. Two Simple Beamforming Algorithms

Our intention is to choose the active sensor weighis ,,, }

g = [e_jwmm e—domT ... e_jmeN,l]T so as to maximize the likelihood of the training get(¢)}:.

m Hence, we sef\ = {w,_,}, and, in light of (1.12), seek to

In the above N is the number of sensors in the array,is the minimize the objective function
propagation delay between the source andttle sensor, and o1 1 T ~—1
wy, IS the center frequency of the-th subband. On the lower K(AW )) T2 zt: V(&) = @] Q (1) [v(t) — p(t)]
branch, the input is first multiplied by th®ocking matrixB,,,, (111.13)
which must be orthogonal ter, ,,,, such that where A~1) s the parameter estimate from timevious
iteration. To reduce computation, we have assumgd = 1
and let u(t) = p; and Q(t) = Q,;, denote the mean

whereg,, is thearray manifold vectol3, §2.2], given by

H
Wq_’mBm =0

Thereafter, the output of the blocking matrix, and variance associated witht) = v,. This corresponds
to the case wherein the sum is made only over the Viterbi
Z,, =B, U, (1.5) path [8,§12.2], and there is a single Gaussian per HMM state.

Based on (111.12-111.13) it is straightforward to develop a ML
is multiplied by theactive weight vectow, .. The orthog- peamforming algorithm that uses a singjégbal utterance for
onality of w,,, andB,, ensures that the total weight vectolenroliment, as proposed by Seltzer [1]. It is also straightfor-
Wi = Wy + Bpwe, satsfiesw] /B, = 1 regardless of ward to develop a simple LMS-style adaptive beamforming
the value assigned tw,,,. In what follows, we will choose gz|gorithm, wherein an instantaneous estimate of the gradient
W, according to the ML criterion, where the likelihood isof the error surface is made, and then a small step is taken in

calculated with respect to an HMM. _ the putative downhill direction.
AssumingV is the output of the GSC, we may write Let K®(A|AG~D) denote the contribution of the subband
snapshot at time to (I11.13), so that
Vi = <w;{m - w{;{mBg) U (I11.6) P (11.13)

ol tain thedel . KOAJACTY) = L iv(t) — p0)]" Q1) [v(t) — p(t)]
Setting w,_,, = 0 for all m we obtain thedelay and sum . . i . .
beamformer, which is the baseline against which any adalj?€ partial derivative OK(t)_(AV\( 1))_W'th respect tow;, ,,,
tive beamforming algorithm must be judged. Equation (lll.6Jan be readily evaluated via the chain rule as

implies DK (A|AG-D)

[Vinl® = (Wl — Wi, BIYUL UL (Wom — Buwam) (IIL7) ow

= —up(t) - Z(t) e () (111.14)

whereZ,,(t) is the output of the blocking matrix (111.5) and

Equations (l1.2) and (ll1l.7) can be used to develop an
expression for the gradient ef, with respect to each of the em(t)
wa,m- Taking a partial derivative on both sides of (IIl.2) givess the output of the beamformer for the snapsbiot(¢) using
the old sensor weightsv, (i — 1). In writing (Ill.14) we

qm

S [wH —wl (- 1)Bﬂ Un(t)  (IIIl.15)

M-1 2
v _ Z SnMim 0 |Vin| (n.8) have also defined
aWZ,m 1=0 |‘/l|2 3W§,m L—-1 v (t) . (t)
v (t) 23 TS B (1) (111.16)

Pn(t)

where {|V,.|>},» are the Mel-warped subband compo-

n=0
nents (1Il-3). If we define Using (111.14), we can readily calculate the gradient for an
M-1e entire enrollment utterance as
5 2 T 9 O AIAC)

K(AAGD) =3

t

This gradient together with the actual value §{A|AG—1)

1=0 X
ow? .,

then (111.8) can be rewritten as

Ouy, _ (t)a |Vm\2 (111.10) can be used to implement an optimization algorithm based on
oW} 1, Prom oW} ' the method of conjugate gradients [4,0.6]. Such a “global”



optimization procedure was proposed by Seltzer [1] for th& Linearized Recursive Least Squares Estimation

beamforming application considered here. . . . S
. As mentioned previously, our beamforming application in-
Because a single utterance can last as long as a few doz

seconds, during which time the speaker may move, turn fofles a nonlinearity due to thisg| —|* in the definition
K 9 P Y ’ Pcepstral sequences. The approach taken in this Section is

?héaggzofpeen. it;v'ggg:’v’e e;%;r:]te\’.\:g::adagifbeg?nto L:E? & simply linearize this term about the current estimate of
the end of V; I%t an Ax d ti\I/ beamf rvr\; Irl V\g/]h|u hld the sensor weights. Applying the matrix inversion lemma, we
€ end ot an utterance. adaptive beamiorme N 09 then formulate &inearizedrecursive least squares (RLS)

exactly this can be obtained by considering the LMS uDdai%timation algorithm

rule: Let N denote the number of sensors in the array, lét
Wam(t) = Wam(t —1) — Em(t) - KM (A[ATD) denote the number of frequency bands in the subband filter
wm wm " OWY bank, and lef. denote the length of the final cepstral sequence.

Given the lengthV — 1 vectorw, ., of active sensor weights
corresponding to then-th subband defined previously, let us
Waom(t) = Wam(E—1)+&n(t) v (t) Zn(t) e, (1) (111.L17)  now define thestackedactive weight vector as

which, upon substituting (111.14), can be rewritten as

It is remarkable that (111.15-11.17) differ from the conven-
tional LMS update rule for a GSC beamformer §3,.7.1.4]
only by the factorv,,(t). To set the step siz€,,(t), Van As before, letU,,(t) denote the array input at timefor the

Wa = [Wa70 Wa,1 e Wa,Mfl]

Trees [3,§7.7.2.2] recommends the heuristic m-th subband, and define the mattixt) of stacked inputs as
__7 .
&m(t) = 225 U(t) £ diag[Uo(t) Ui(t) Us(t) - Unoi(t)]
where Also define the stacked blocking matiik as
2 2 H
02,(t) = B3, (t — 1) + (1 - B) UL(1) Un(t) B2diag[Bo By By - Byi]

Is the average power in the-th subband. In the above,is a As in Section llI-C, we seek to minimize the auxiliary

constant with a typical value d¢f.005 < v < 0.05. Similarly,  f,nction '

[ is a constant close to unity; i.63,> 0.99. We can also use

a simple technique based on that in Van Trees§37.4] for ~ K(A|A®) = 1> [v(t, Wa) — u(0)]" Q71 (1) [v(t, Wa) — pa(t)]

enforcing the quadratic constraint t (V1)
[Wam(®)]? < a2 where we have explicitly shown the dependencev@f) =

a.m - v(t,W,) onW,. Itis then apparent that (IV.1) has the form of

for some realn > 0, which is beneficial in the presence Oﬁnfc_)nllr;ﬁarleast Sqtl_JéhreS estlmagon prob!jem. As in (11.2-11.3),

steering errors and other forms of mismatch §8,6]. The efine theexponentially-weighted squared erras

algorithm first calculates ¢

e(t;We) = / ATV (E,Wa) — ()] Q7L(E) [v(E, W) — (i
Fam(t) = Wam(t — 1)+ Em(t) - vm(t) Zon(2) % (8) (t; Wa) ; [v( ) — ()] Q7 (4) [v( ) — u(d)]

) ] ) ) (IvV.2)
exactly as in (I1.17). Thereafter, the final weight vector iswhere \ is once more the forgetting factor. Next we seek to
obtained from linearize this RLS estimator about the current estinvattgt)

(D) = Wam(t), if (| Wam(t)]? < a2 (11.18) ojrthe weight vector. From (111.12) and (I11.15) it follows [10,
w cm(E)Wa.m(t) otherwise ' 541 .
Ovup, H
where, for a conventional LMS beamformer, D = Crisnm () Zy, (1)
a a,m
em(t) = —2 (111.19)
S O] where
In HMM beamforming, the sensor weights in each frequency Crisnm(t) = =pum(t) - em(t) (IV.3)

bin cannotbe optimized independently; hence, we found i is then apparent that(t; W,) can be approximated with the
beneficial to define a single scale factoy(t) = c(t) for all first order Taylor series,

m according to

a V(t;W,a) & v(t; Wa(t — 1)) + Crus()Z7 (t) [Wa —W,(t—1)
= 1.2
O = e @] (1:20) (V4
m where
IV. RECURSIVELEAST SQUARESESTIMATION Crus(t) = {Crisnm ()}, (IV.5)

Here we provide the development necessary to cast theg
HMM beamformer as a recursive least squares estimation
procedure. Z(t) =diag[Zo(t) Z1(t) Zo(t) -+ Zn—1(t)]



is the matrix of stacked blocking matrix outputs. We now applg. Extended Recursive Least Squares Estimation

this approximation to (IV.2), to obtain In RLS estimation, we calculate an estimate of a set of
¢ . deterministicparameters so as to minimize a squared error
(t;W,) = Z}\H [CRLS(t)ZH(t)Wa _ p(i)} Qi) criterion. In Kalman filtering, on the other hand, we estimate
i—1 the current state of a stochastic process, which is itself
H o assumed to be mndomvector. Although the two estimators
' {CR"S(t)Z (t)Wa — ”(l)} (IV-6) are formulated differently, the quantities estimated by each can
where be put in a one-to-one correspondence, as originally proposed
_ - H s in [11], and discussed in [2§10.8]. This correspondence
) = () - [V(t;w“(t_l)) ~ Crus(t)Z7 (Wt — I)L follows upon associating the parameters of interest in the
. . . . (Iv.7) RLS estimation problem with the state of the Kalman filter,
Through straightforward algebraic manipulations, (1V.6) can, h o 1i4) for the RLS estimat
be expressed as whereupon the precision ma m3(t) or the estimator can
be equated to the covariance matrix of thtate estimation
e(t; W) = eo(t) —WH ()= ¢ ()W +WH B ()W, (IV.8) error for the Kalman filter. Indeed, this correspondence is
extremely useful, as it implies that by formulating a given

where . RLS estimation problem as a problem in Kalman filtering, we
B(1) = Z A TIZ(6) Cl o (0)Q ™ (§) Crus(6) 2 (4) can draw upon the_v_ast literature on Kalman filtering pubhs_hed
P since Kalman’s original paper [12] to improve the numerical
—AB(t— 1)+ Z(t)CH()Q ' (t)Cris(t)Z7 (1)  (Iv.9) TFobustness, rate of convergence, tracking capabilities and other
" characteristics of the estimator so obtained. In [10], this
¢(t) = Z N7 Z()CRs()Q ™ (1) (i) correspondence is developed in great detail for the HMM
i=1 beamforming problem treated here. For reasons of brevity, we
= X(t—1) + Z(t)Chs()Q ™ (t)n(t) (IV.10) can only summarize the key points presented in that earlier
t ) work. The desired estimator can be derived with the following
co(t) =Y _ AT (H)Q ' (1)m(i) steps:

_ ;\:1 e 1+ 2T (001t 1. Cast the linearized RLS estimator developed in Section IV-
o )+ HQ T (®)A?) A as an extended Kalman filter (EKF), wherein the non-
Differentiating (IV.8) and equating the result to zero, we linear observation equation is linearized about each new
obtain thenormal equations estimate of the sensor weights. This development is very
similar to that in [2,5§10.8].

P(H)Wa = (1) 2. Refine the EKF as ariterated extendedKalman filter

which, assuming®(t) is invertible, are readily solved as (IEKF) [13, §8.3]. In the IEKF, severalocal iterations
. 1 are made for each observation, wherein the observation
Wa(t) = @7 (1)¢(t) (IV.11) equation is relinearized about the new state estimate.
Applying the matrix inversion lemmd2, §9.2] to (IV.9) Thereby the IEKF provides faster convergence than the

provides EKF, especially when the initial parameter estimate is far
() = ATt — 1) — AR (t — 1)Z(H)CRs(t) from the optimum. . _
» oo 4 .1-1 3. Recast the IEKF as an iterated extended recursive least
: [Q(t) + A7 Crus(t)Z7 ()2 (- 1)Z(t)CRLs(t)] squares (IERLS) estimator. This is necessary for any prac-
- Cris()ZH ()@t — 1) (IV.12) tical implementation inasmuch as the state vector of the

o o ) L Kalman filters obtained in Steps 1 and 2 grows exponen-
Defining the precision matrix P(t) = @~ (¢) we can tially with time [2, §10.8].

rewrite (IV.12) as 4. The inverse of the state error covariance mafift) is
P(t) = A""P(t—1) — A" 'Grus(t)Crus(t)Z" (t)P(t — 1) (IV.13) known as theFisher information matrix{14, §3.4]. In the

where final step, the IERLS estimator is converted itdorma-
tion form see Haykin [2,§10.9]. As will be discussed
Grus(t) = AP (t — 1)Z(t)CRLs(t) in Section IV-D, the information form of the estimator
. . . . :
) D) 4 AL Cri (D ZH (P(E — 1VZ(DCH (¢ V14 enables the diagonal loading of the resulting estimator to
[Q( )+ rus()Z7 (P = DZ(0)Crisl )] (V.14) be periodically refreshed.

is theKalman gainfor this RLS problem. It is then straight- The steps above, as well as the final form of the IERLS
forward to show that the desired update formulae for the actigetimator are summarized in [1§6.3].

sensor weights is

W (t) = Wq(t — 1) + Gres(t)&(t) (Iv.15) C. Independent Processing of Subbands
Where One of the great advantages of conventional subband do-
() = p(t) — v(t-W (t—1)) (IV.16) main beamformers of either the LMS or RLS variety is that

the sensor weights for the individual subbands can be set
is thea priori estimation error independently. This is a direct consequence of the statistical



Input paired vector processie(1), U(1)), ..., (p(t), U(t))
Known parameters:

o stacked blocking matrixB .
« cepstral sequence obtained from GSC beamformér W, (¢t — 1))
« oObservation error covariance matriQ(t)
« initial diagonal loadingo?2
Initial conditions:

Computation:t = 1,2,3, ...
$1 = Wa(t - 1)

lterate:i=1,2,3,...,f—1

M—1
I:'f(t? >\71/2§Di) = “(t) - V(t; A71/2<pi) - Z CW(t; Ail/z‘pi,m) 7n(t)‘P7, m
m=0
lterate:m =0,1,...,M — 1
PLLE) = APt — 1) + Zm (Bl (A7 20, ) Q7 (Bem (A7 2, ) 20 (1) (V.17)
P (0@ 1.m = AP (E— DWa,m(t — 1) + Zon (el (07 2, , )QT (W) m(t; A" 2p;)  (1IV.18)
Cittm = Pm(t) [Pl (O)Pis1,m] (IV.19)
Set:
Wa(t) = ¢ (1IV.20)
Notes:

1. The local iteration ovei continues until there is no significant difference betwegrand ¢; 1.
2. cm(t; A"2¢; ) is m-th column of the matrixCrs(¢) defined in (IV.3) and (IV.5) wherdV, = A\~1/2¢; ..

TABLE |
INFORMATION VERSION OF THE ITERATED EXTENDEDRLS ESTIMATOR WITH UNCORRELATED SUBBAND STATE ESTIMATION ERRORS

independence of the subbands{3,2]. Treating each subbandoffers advantages with regard to numerical robustness. The
independently results in a tremendous savings in computatidetails of the square-root implementation 1] for the

for the RLS variety beamformers, and much faster rate wérated extended RLS estimator considered here can be found
convergence for LMS beamformers. In order to rewrite tha [10, §7.2].

recursions pertaining to the information version of the RLS In conventional beamformingjiagonal loadingis usually
estimator based on the assumption of uncorrelated subbaoded to®,,(t) = P,.'(t) in order to restrict the size of

state estimation errors, we assue' (¢) is block diagonal, W (¢) = ¥ . Thisis done to control the sidelobe structure
g a,m wf,m

such that and reduce the sensitivity of the beamformer to steering
1 . . . 1 errors [3,86.6]. Although®,,,(t) is typically initialized as a

PT(t) =diag[P; (1) Py'(t) -+ Py,(t)] (IV.21) diagonal matrix, this initial loading quickly decays whenever

and then define A < 1. One advantage of the information version of the

RLS estimator is that the diagonal loading can be periodically
refreshed in the following fashion. Let denote the-th unit
ctor. Suppose we would like to add the loadisi)(t)

i-th diagonal component &, () accordlng to

T
= [‘PiTo ‘PiTl ‘PiTz ‘PfTM 1]
The recursions defining the information version of the |terateiﬁ
extended RLS estimator can then be written as in Table I;
see [10,57.1]. B () =Pn(t) + ﬂm( )e; z (IV.22)

This can be accomplished by forming the prearray
D. Adding Diagonal Loading

Equations (IV.17-IV.18) can be solved fd_'(t) and A= [P_H/2() L Bm(t)e z‘]
P ()11 . Whereupon the updated sensor weights f0”°\é{nd then constructing a unitary transformatiéh that
from (1V.19). But the calculation oP(t) requires anO(N®)  achieves [16]
inversion of P~ (). This expensive operation can be avoided
by propagating the Cholesky decomposition [¥8.2] or A9; = [PZH/Q(t) : 0}
square-root P, #/2(t) of P~1(t) instead of P~1(¢) itself, "
which implies the sensor weightg,., ,, can be obtained where P H/Q(t) is the desired Cholesky decomposition
through a simple forward substitution. This approach alsd (IV22)



L . . 2 } Interference
The application of eachf; requires O(N?) opera Beamformer [ None | Music | Talking

tions; hence, diagonally loading all diagonal components of Single-Channel|| 61.37 | 65.94 | 64.36
P, /2(t) is an O(N?) procedure. Note, however, that the D&S 51.34 | 59.95 | 50.39
diagonal loading need not be maintained at an exact level, Uncgitcrained gi:gg ggﬁ g%;
but only within a broad range. Thus, with each iteration of

RLS estimation, the diagonal componentsEI;Ll/Q(t) can TABLE |l
be successively loaded, so that the entire process remainSyorb ERROR RATES FOR GLOBAL(I.E., SINGLE UTTERANCE) ML
O(N?). BEAMFORMING EXPERIMENTS

V. SPEECHRECOGNITION EXPERIMENTS

. . Interference
_The speech experlme_r_ns descn_bed below W_ere_conducted e None | Music | Talking
with the Janus Recognition Toolkit (JRTk), which is devel- D&S [ 51.34 | 59.95 | 59.39
oped and maintained jointly at the Unive&itKarlsruhe in 10*§ 51.31| 59.84 | 59.39
Karlsruhe, Germany and at the Carnegie Mellon University in 1077 |} 51.321 59.70 | 59.25
. . 10 51.17 | 59.54 | 58.94
For these experiments, training was conducted on the En- 10° || 51.28 | 59.42 | 58.68
glish Spontaneous Scheduling Task (ESST) corpus, which
contains approximately 35 hours of speech contributed by TABLE Il

242 speakers. The speech material was collected durin/ORD ERROR RATES FORIMM-LMS BEAMFORMING EXPERIMENTS
spontaneous dialogs between two speakers engaged in the
planning of overseas business trips. The dialogs were orig-
inally recorded with Sennheiser head-mounted, close-talkmgAn unadapted HMM with 48 Gaussians for each of 2,340

microphones. The clez_in speech from the original E.SST reco(Ll )debooks was used for all speech recognition experiments.
ings was used to train the HMM speech recognizer for

experiments sing this model to recongize the original clean speech test
. 0 :
The ESST test set is approximately 3.5 hours in length aS t, a word error rate (WER) of 31.94% was achieved. For the

. : . . M beamforming experiments, an auxiliary model was used
contains 58 dialog halves contributed by 16 unique speakefrosr. sensor weight optimization, which had a single Gaussian
The total test set comprises 22,889 words. For the beamform- f : 9
ing experiments described below, the clean speech test dpa%n ponent per cod.ebook.'OnIy static cepstral features were

: used for sensor weight estimation.
was played through a loudspeaker int® & 8 meter room
with a reverberation time of approximately 350 ms, and then )
recorded with a linear microphone array. The array consistfd Experimental Results
of eight Sennheiser omnidirectional microphones separated byl he results of thglobal optimization experiments, wherein
4.1 cm. The stationary loudspeaker was located 2 m in froie longest utterance for each speaker was selected, and
of one end of the array. In addition to the source speech dataytiple iterations of conjugate gradient descent were run on
interference data was also recorded by moving the speaklt@s one utterance to find the ML sensor weights, are shown in
parallel to the array approximately 3 m from the location usethble Il. As is clear from the table, the global sensor weight
for the source. Two types of interference were recorded: musiptimization provided only a marginal gains in the experiments
from a chamber orchestra and speech from another talker.without interference. For the cases with music and talking
All speech data was digitally sampled at a rate of 16 kHinterference, however, the reduction in WER with respect to
The speech features used for all experiments were obtainedliyy D&S baseline was substantial.
estimating 13 cepstral components, along with their first andThe results of the experiments with the HMM-LMS beam-
second differences. Features were calculated every 10 ms udorgner are given in Table Ill. The left column indicates the
a 20 ms sliding window. In extracting the cepstral features,value assigned the bound on the size of the active weight
Hamming window 320 samples in length was first appliedector; see (I11.18) and (l11.20). As is clear from the table,
to each segment of speech. The windowed segment was therimprovement in recognition performance was observed for
padded with zeros and a 512 point FFT was calculated. Rbe no interference case. For the music and talking interference
the single-channel experiments, the frequency samples weases, there is a statistically significant reduction in WER, but
then used to calculate cepstral coefficients as in (l1l.2—l1.3he gains arenot so large as those obtained with the global
For the various beamforming scenarios, the frequency sampigdimization scheme.
from each sensor in the array were combined as in (111.6) andThe results of the experiments with the HMM-RLS beam-
thereafter the cepstral coefficients were calculated. former are given in Table IV. The left column indicates the
All experiments with HMM beamforming algorithms wereamount of diagonal loading applied as in (IV.22) measured
conducted withoracle state alignments, which were obtainedvith respect to the average power in all subbands; more load-
by performing a Viterbi state alignment with the correcing implies the active weight vector is smaller. To achieve fast
transcription on the output of the delay and sum (D&Shitial convergence, five (5) local iterations with a forgetting
beamformer. All sensor weight optimization was performef@ctor of A = 0.98 were conducted for each of the first 1000
in the cepstral domain as described in Sections Ill and IV. cepstral observation according to the iterated extended RLS



Coad Laver I Nors '”R‘Z:Seigencﬁalki g no interference scenario, but substantial reductions for both
D&S 51.34 | 59.05 | 59.39 music and talking interference. We attribute this difference
-35 51.32| 59.79 | 59.20 in behavior primarily to the short analysis window of 20 ms
:jg g;g? gggg gg:%’ used for these experiments. Such a short window is adequate
50 58.35| 71.24 | 65.54 for an adaptive beamformer to suppresdirect interference
signal, but is insufficient to remove reverberation, which is the
TABLE IV primary distortion in the absence of any strong interferer. It is
WORD ERROR RATES FOR ITERATED EXTENDEIRLS BEAMFORMING worth noting that Seltzer [1] obtained significant reductions in
EXPERIMENTS WER for speech material that had been artificially “reverber-

ated” by convolution with a room impulse response. This was
achieved, however, by includirdelayedfrequency samples in

Coad Level (dB) Ng]r:eerfermcsfc the beamforming procedure. As discussed in the next section,
D&S 51.34 | 59.95 we believe that the same effect can be obtained by using a
ig gigé gg-g; better filter bank, with a longer memory.
40 5131 | 6021 Based on the global optimization experiments, it seems
35 51.46 | 60.77 that cepstral-domain optimization is very viable. Seltzer [1]
30 53.68 | 63.36 achieved substantial reductions in WER by performing all
TABLE V parameter optimization in the log-spectral, instead of cep-

stral domain. We also conducted several experiments wherein
sensor weight optimization was performed in the log-spectral
domain. Unfortunately, none of these experiments resulted in
a WER reduction with respect to the D&S beamformer. Our

efforts to resolve this discrepancy are ongoing.

algorithm described in Table I. As the sensor weights were The results in Table Il clearly show that_ the constrained

largely stable at that point, one a single local iteration witlfSC actually outperforms the fully unconstrained beamformer.
A = 1.0 was performed thereafter. Here again we obserfdne possible explanation for this observation is the following:

no gain with the no interference case. For the music av¥henever a random variable or vector transformed, it's like-

talking interference cases, there is a statistically significafiood in the transformed space must be multiplied by the

reduction in WER for diagonal load levels of -40 and -45 gadacobianof the transformation [17§6.3] to obtain the true

respectively, but the gains ar®t so large as those obtainedikelihood. In the present case, a transformation is performed
with the global optimization scheme. on the spectral input of each sensor to obtain the final output

Finally, for the sake of comparison, we tested convention@l the beamformer. Because the GSC imposes a distortionless

RLS and LMS beamformors with the same Hamming windovgonstraint on the look direction, however, the Jacobian for the
FFT filterbank used for the HMM beamforming experimenté@’c’k direction is unity. The unconstrained beamformer imposes
The results of the experiments are given in Tables V and VP such constraint, but neglects to account for the contribution
respectively. Frequency dependent scaling factors as in (111.1J)the Jacobian during sensor weight optimization. Hence, the
were used in estimating the sensor weights for the conikelihood” used by the unconstrained beamformer is not the
ventional LMS beamformer. For both types of convention@ctual likelihood of the source features. o
beamformers, the variations in WER are essentially random:AS reported in Table IV, we have observed statistically

i.e., the conventional algorithms failed to provide a statisticalfj9nificant WER reductions with the adaptive RLS-HMM
significant improvement in system performance. beamformer, but not so much as with the global optimization

schemes. We hypothesise that the smaller reduction in WER
_ _ is a product of the failure of the Hamming window-FFT filter

B. Discussion bank to provide sufficiently independent spectral samples, as
As noted before, the global optimization procedure providégas explicitly assumed in (IV.21); i.e., there is simply too

only a marginal reduction in WER with respect to D&S in thénuch overlap between adjacent bins in the frequency domain
due to the spectral smearing of the relatively short analysis

window. The fact that the conventional algorithms provided

WORD ERROR RATES FOR THE CONVENTIONAIRLS BEAMFORMER IN
GSCCONFIGURATION.

e N'O”;Sferm‘;?c no improvement with respect to the D&S beamformer would
D&S T 5134 | 59.95 seem to support this hypothesis. Further experiments with a
10~* || 51.32 | 59.92 better filter bank, however, are required to verify it. As the
10:2 5147 59.82 design of perfect reconstruction filter banks is now a well-
18_1 gi;;é gg:gg established [18] field, there are several well-proven designs

that might potentially be used in the current application.
TABLE VI
WORD ERROR RATES FOR THE CONVENTIONALMS BEAMFORMER IN VI. CONCLUSIONS ANDFUTURE WORK
GSCCONFIGURATION. In this work, we have briefly discussed the meeting room
scenario as the next challenge for the ASR community. Also,
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following [1] we have considered the problem of adaptivelyoom environment must be able to adapt to moving sources and

setting the sensor weights of a GSC beamformer underother changes in the environment, this limitation in tracking is

ML criterion. In particular, we showed that it was straightelearly a drawback. Fortunately, one possible remedy is readily

forward to develop both LMS and RLS adaptive algorithmgbtained by exploiting the equivalence of RLS estimators and

for ML beamforming. These algorithms had many of th&alman filters mentioned in Section IV-B. Because the RLS

same advantages and drawbacks of conventional LMS a&timator implicity assumes the parameters to be estimated are

RLS algorithms: Both LMS and RLS algorithms update thdeterministic and constant, casting the linearized RLS estima-

sensor weights each time a new subband snapshot is receiteddeveloped in Section IV-A as a Kalman filter provides a

and both process each snapshot only once, and thereditir with no process noiseFor applications wherein these

discard it. The LMS algorithm developed here, much like thearameters change with time, however, it is straightforward to

conventional LMS algorithm, is characterized by simplicityinclude process noise in the model. The larger the covariance

both conceptually and in its implementation. Moreover, it hasf this process noise, the greater the uncertainty in the estimate

a computational complexity aP(N) where N is the number of the state parameters. Hence, the covariance of the process

of sensors in the array. Unfortunately, this simplicity is offsetoise can be allowed to vary with time, such that during

by the potentially slow convergence of the LMS algorithm [3ntervals wherein the speaker’s position or other environmental

§7.7]. The RLS algorithm is more difficult conceptually andactors change quickly, the state parameters are also allowed to

has a computational complexity ¢?(N?2). But in return for quickly adapt. Haykin [2§14.7] discusses several applications

this higher computational load, the RLS algorithm provideshere this approach was used with good effect.

faster convergence [3,7.4]. In the speech recognition exper-

iments described in Section V, both LMS and RLS versions

of the_HMM beamformer providgdly statistically significant REEERENCES
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